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SUMMARY 
Sudden total collapse of a dam holding back a reservoir of water, whenever it occurs, becomes formidably 
impressive in the extent of destruction with which it is associated. The movement on a dry bed of 
a two-dimensional flood wave resulting from the break of a dam has been one of the most important and 
challenging subjects in rapidly varied unsteady flows from the computational point of view. An implicit 
time-marching finite volume numerical scheme was developed and subsequently applied for the solution of 
the two-dimensional unsteady open channel flow equations written in conservation form. In order to avoid 
the problems associated with a conventional grid system, a body-fitted non-orthogonal local co-ordinate 
system was utilized. The proposed numerical technique was applied to determine the stage hydrographs, 
water surface profiles and velocities of flood flows resulting from suddenly breached storage dams. 
Predictions were compared with an analytical solution, with available numerical solutions using 
MacCormack’s two-step explicit scheme and with experimental measurements. Agreement between predic- 
tions and measurements regarding the wave front advancement and stage hydrographs is considered to be 
satisfactory. 
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1. INTRODUCTION 

In recent years significant numerical method advances and computer-based algorithms have been 
made in fluid flow problems. These advances have provided engineers and scientists with the most 
powerful means of solving complex fluid-engineering problems. Sudden total collapse of a dam 
holding back a reservoir of water, whenever it occurs, becomes formidably impressive in the 
extent of destruction with which it is associated. The movement on a dry bed of a two- 
dimensional flood wave resulting from the break of a dam has been one of the most important 
and challenging subjects in rapidly varied unsteady flows from the computational point of view. 
Essentially, the flow properties are assumed to be invariant along the vertical direction. These 
simplified representations of a three-dimensional flow are justified where turbulent mixing, due to  
bottom roughness, effectively generates a uniform velocity distribution over the flow field. The 
associated flow problem has been the subject of extensive research work for the last 20 years. The 
governing flow equations for the two-dimensional shallow water flow were solved using the 
method of characteristics, the explicit finite difference method, the implicit finite difference 
method and the finite element method. Unlike one-dimensional flow, applications of two- 
dimensional unsteady flow are few in number and have only recently been appearing in the 
general literature. The basic flow equations are hyperbolic-type partial differential equations. 
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From the analysis of dam-break flood wave movement, two main difficulties arise which require 
specific consideration: (a) the proper mathematical formulation of the wave front region, espe- 
cially for the period immediately after the dam-break when local accelerations are very high and 
the water surface slopes are exceedingly steep; (b) the proper satisfaction of the solid boundary 
conditions of a geometrically complex channel. 

Xanthopoulos and Koutitas’ numerically investigated the propagation of a flood wave on 
a two-dimensional dry plain. The velocity components, the water depth and the position of the 
water front for each time step were computed through an explicit finite difference scheme in 
Eulerian space. The forcing function consisted of the charge by a discharge hydrograph on 
a boundary point. The method was applied on a Northern Hellenic plain for the study of its 
inundation due to failure of an operating earth dam. However, the assumptions made about the 
governing flow equations restricted the possible applications of their model. Gallati et aZ.’ 
presented a mathematical finite difference model solving the two-dimensional shallow water 
equations without the convective terms. The model showed good behaviour and the obtained 
results were close to the available data. 

Townson and Al-Salihi3 applied the method of characteristics to the quasi-2D shallow water 
equations written in cylindrical co-ordinates (radial flow, R-T space). Instant failure of a dam 
between walls which either converge or diverge was simulated. Comparisons were made with 
Ritter and Stoker solutions for parallel walls and different downstream depths. Physical model 
test results confirm general expectations that converging walls create deeper and faster flows 
downstream and vice versa. Katopodes and Strelkoff4 developed a mathematical model of the 
two-dimensional dam-break flood wave based on the method of characteristics. The selection of 
the method was based on the fact that the curvilinear wave boundaries and irregular geometry 
associated with the dam-break problem in two space dimensions were poorly modelled by 
finite differences. However, secondary shock waves were not accounted for by the method. No 
comparisons with measured data were reported. A simple experiment was set up in order to 
establish the qualitative similarity with the mathematical model. 

Popovska’ developed a numerical model for two-dimensional unsteady flow in open channels 
using a simple time-split explicit scheme over the conservative form of the basic equations. The 
mathematically simulated wave front propagates 25% slower than the measured one, with an 
elongated form in the predominant flow direction. It was stated that the errors should not be 
attributed to the mathematical model only since the values of the physical model may be in error 
too. More investigation was therefore needed. Rajar and Cetina6 solved the two-dimensional 
dynamic and continuity equations written in a curvilinear orthogonal co-ordinate system where 
one of the axes was aligned along assumed streamlines. The basic numerical procedure was taken 
from the well-known Patankar numerical method, but some new features had to be introduced. 
Measured and computed results showed surprisingly good agreement. 

Dammuller et a1.’ analysed the unsteady flow in a curved channel. The equations describing 
the conservation of mass and momentum were transformed from a Cartesian co-ordinate system 
to a channel co-ordinate system. Then the equations were integrated over the depth to obtain 
a set of depth-averaged two-dimensional equations that were then solved using the MacCormack 
explicit finite difference scheme. They concluded that the agreement between computed and 
measured water levels was satisfactory. The computed wave speed is slower than the measured 
wave speed when the flow is near critical conditions. Bellos et aZ.* numerically examined the flood 
waves resulting from the instantaneous break of dams. The governing system of differential 
equations was transformed into an equivalent system applied over a square grid network in order 
to overcome the difficulties and inaccuracies associated with the determination of flow character- 
istics near the flow boundaries. It must be noted that a similar approach is adopted for the 
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current method. However, Bellos et al.' and Bellos'O utilized the MacCormack two-step 
predictor-corrector explicit numerical scheme. Comparisons between computed and measured 
data showed satisfactory agreement. The MacCormack explicit time-splitting scheme was utilized 
by Garcia and Kawahita" for the development of a two-dimensional hydraulic simulation model 
that solves the St. Venant equations. The method has been found to be computationally efficient 
and warrants further development. However, the reported applications showed that the tech- 
nique was not capable of accurately describing flow fields with irregular geometries owing to the 
rectangular grid used. Fennema and Chaudhry" utilized the Beam-Warming implicit finite 
difference scheme to integrate the equations describing two-dimensional unsteady free surface 
flows. 

Katopodes and WuI3 presented a finite element method of fourth-order accuracy. The method 
was explicit in time and was well suited for discontinuous flows. Samue l~ '~  examined two- 
dimensional (in plan) models over a flood plain using finite elements. Three different sets of model 
equations were introduced and their mathematical type and appropriate boundary conditions 
were discussed. Finally, Di Monaco and Molinaro" derived a finite element two-dimensional 
model of free surface flow. The verification was made against experimental data for the problem 
of the emptying of a reservoir due to dam-breaking. They concluded that the choice of initial 
conditions greatly influenced the accuracy and convergence of the solution, at least in the initial 
time steps. 

This paper is an extension and improvement of previous research work on steady two- 
dimensional subcritical-supercritical flow for open channel calculations developed by Soulis and 
Bellos.'6 The general technique used is a combination of the finite element and finite difference 
metods. First, a transformation is introduced through which quadrilaterals in the physical 
domain are mapped into squares in the computational domain. The governing system of 
equations is thus transformed into an equivalent system applied over a square grid network. In 
the second phase a time-marching method is employed for the solution of the transformed system 
of equations. This scheme is well suited for flow computations where discontinuities of the flow 
may be present. 

In order to validate the proposed numerical method, it was decided to test it against available 
experimental data" as well as availabe two-dimensional numerical solution results.' The two- 
dimensional algorithm was also used to simulate one-dimensional dam-break analytical"-nu- 
merical'* solutions as well as experimental data." The programme can be applied on any given 
topography provided that the assumptions about the flow conditions are met. 

2. THE GOVERNING UNSTEADY FLOW EQUATIONS 

Under the assumptions of homogeneous 2D incompressible flow with hydrostatic pressure 
distribution over a cross-section with wind and Coriolis forces neglected, the equations which 
govern the flow resulting from the rupture of a dam are written in matrix form as 

W, + F, + G, = D, (1) 

where 

w=[ 
hu 
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hv 
G =  [ huu 1, D =  

hv2 + gh2/2 

The subscripts x, y and t have been used to denote partial derivatives. In the above system u is the 
average velocity component in the longitudinal ( x )  channel direction, v is the average velocity 
component in the transverse ( y )  channel direction, t is the time, h is the water depth, g is the 
acceleration due to gravity, Sox is the channel slope in the x-direction (=-dz,/ax, with zo the 
bottom elevation), Soy is the channel slope in the y-direction (=- azo/ay), Sfx is the resistance 
slope in the x-direction, Sf, is the resistance slope in the y-direction, x is the distance along the 
channel and y is the distance along the transverse to the channel axis. The resistance slopes are 
evaluated usng the Manning relation. Thus 

Sfx = nz uJ(u’ + v2)/h4I3, 

S f y = n 2 v J ( u 2  + ~ ’ ) / h ~ ’ ~ ,  (4) 

(3) 

where n is the Manning roughness coefficient of flow. In equations (3) and (4) the water depth 
h also has the meaning of flow hydraulic radius R. 

3. INITIAL AND BOUNDARY FLOW CONDITIONS 

The problem must be closed with an appropriate description of the initial and boundary 
conditions. The unsteady flow region expands both upstream and downstream from the dam-site 
flow region. The current method does not keep track of the boundaries of the unsteady flow 
region. The boundary conditions at the furthest upstream and downstream ends of the flow field 
at any time are known. 

3.1. Initial flow 

The following relations have been taken as initial conditions for the dam-break problem. 

Upstream from the dam-site 
h (x ,  Y ,  t o ) = h i ( x ,  Y ,  t o ) ,  

4x9 y ,  to )  = 0.0, 

dx,  Y, to)  = 0.0, 

(5 )  

(6) 

(7) 
where the subscript zero denotes initial values. The water depth h ,  depends on the upstream 
bottom slope. Thus 

(8) 
where in this case x is the distace along the channel measured positive from the dam-site located 
at x = O.O-. The superscript minus denotes the distance immediately upstream from the dam-site. 

h l k  Y ,  to )=h1(0-0- ,  Y ,  to)+Soxx, 
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The above equations represent the Ritter” solution for one-dimensional frictionless flow. 

Downstream from the dam-site 

h (x ,  y, t o )  = 0.001 h l ,  (12) 

U ( X ,  Y ,  t o )  =@O, (13) 
u(x, y, to )  = 0.0. (14) 

The above equations represent the dry bed conditions. However, dry bed problems indicate that 
the flow depth at the wave tip reduces to zero while the tangent to the profile becomes vertical. 
Whenever one tries to solve the above problem numerically, one faces serious difficulties. To 
avoid these unfavourable consequences, all depths are set equal to a minimum value of the order 
of O.OO1hl. The same procedure is applied inversely at the trailing edge of the wave in case the 
flow depth at the upstream boundary reduces to zero. Numerical experimentation has shown that 
the above minimum value of OOO1hl was sufficiently small. Further reduction of this value did 
not alter the flow properties. Figure 1 shows a finite length reservoir on a sloping channel. 

3.2. Upstream flow boundary 

The flow regime obtaining at the upstream end of a reach determines the nature of the 
boundary conditions required there. For all current method applications one-dimensional flow is 
considered. With subcritical flow one physical condition is required. This condition requires that 
the flow normal to the upstream face must be zero. The other is then found by solving a difference 
equation based on the characteristic form of equations (1) for one-dimensional flow. The 
backward characteristic equation is given by” 

(Wf + (u - c) (hu)x -(u + 4 Ch, +(u - c ) h x l =  g w o x -  Sfx), (15) 

where 

C=(gh)’” 

is the celerity. The velocity u is considered to be zero and equation (15) is modified accordingly. 

3.3. Downstream flow boundary 

The flow regime obtaining at the downstream end of the reach is also considered to be 
one-dimensional. The flow quantities of depth and velocity can be calculated from the simultan- 

Figure 1. A finite length reservoir 
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eous solution of the two characteristic equations. These two equations comprise a linear algebraic 
system with unknowns h and u. In practice the water depth is calculated using equation (38) of 
Section 5.2, while the flow velocity is calculated within the main flow discretization routine, which 
is an iterative process. 

3.4. Solid boundaries 

The condition of no mass flow across the solid boundaries of the open channel needs to be 
applied. This condition requires the velocity component normal to the solid face, qn, to be zero: 

qn = 0.0. (17) 

4. TRANSFORMATION OF THE UNSTEADY FLOW EQUATIONS 

In order to overcome the difficulties and inaccuracies associated with the determination of flow 
characteristics near the flow boundaries as well as to have the ability to use dense or sparse 
computational grid points in predefined flow regions of the tested area, the governing system of 
differential equations (1) is transformed into an equivalent system applied over a square grid 
network. Thus the essence of the present numerical scheme is that quadrilaterals in the physical 
domain will be separately mapped into squares, subsequently called finite volumes, in the 
computational domain by independent transformations from global (x, y) to local ( 5 ,  q)  co- 
ordinates as shown in Figure 2. The quadrilaterals are packed around the boundaries of the open 
channel and cover the whole flow field. This is shown in Figure 3. Figure 4 shows the computa- 
tional grid which emerged as a result of the applied transformation. Linear shape functions are 
defined in terms of a non-orthogonal co-ordinate system 5, q for the quadrilaterals (see Figure 2). 

4 

Physical domain Computational domain 

Figure 2. Quadrilaterals are mapped into squares 



DAM-BREAK FLOOD FLOWS 637 

solid boundaries 

reservoir 

Figure 3. Typical grid (1 3 x 49) 

dam - site 

1 

Figure 4. Transformed (computational) grid 

Let H be the transformation matrix from the physical system to the computational system; then 

J - '  =[HI. (19) 

The following relations 

Under the aforementioned transformation of equations (1) into the local co-ordinate system 5 ,  q 
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they assume the form 

r 
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W + F + G b = D', 

1 hU 
W ' = J - '  1;; 1, F ' = J - '  hUu+(,gh2/2 1 hUu + tygh2/2 

hV 0 
(22) 

U and V being the velocity components in the local co-ordinate system. The velocities u and u are 
related to U and V by 

[:I=.[ ;] 
5. NUMERICAL SOLUTION PROCEDURE 

5.1. Main flow discretization 

unit height (see Figure 5 )  and a time step At as 
The unsteady flow equations (21) may be written in conservation form for a control volume of 

- A(J - 'h)=  [A(J - ' hU)Aq + A(J  - ' hV)A{]  At/A(Aq (continuity), (24) 

- J - ' gh(Sox -&,)At (x-momentum), (25) 

-J-'gh(Soy-Sf,)At (y-momentum). (26) 

- A ( J  - hu) = { A  [ J - ' (hU u + (,gh2/2)] Aq + A [ J - ' ( h VU + qxgh2/2)]A (}At/A(Aq 

- A(J - ' h ~ ) =  { A  [J - ' ( ~ U U  + (,gh2/2)]Aq + A[J  - ' ( ~ V U  +q,gh2/2)]A{}At/A(Aq 

The notation of the general flux balancing across the finite volume is also shown in Figure 5. 
Three cases are involved. 

For the mass fIux an XFLUX at grid point (i ,  j )  is defined as 

(XFLUX)i, j=  [( J - ' hU)i+ 1, j + (J - ' hU)i ,  j)]Aq/2, 

(YFLUX)i, j=  [ ( J  -' h V) i ,  j +  ( J  -' hV)i, j -  I ) ]  A5/2. 

(27) 

(28) 

while the YFLUX at the same grid point is defined as 

For the x-momentum flux balance the corresponding ( XFLUX)i, and (YFLUX)i, are defined 
as 

(XFLUX)i,j={ [ J - ' (hUu+ (xghz/2)]i+ 1, j+ [ J- ' (hUu + 5xgh2/2]i, j}Aq/2, 

(YFLUX);, j=  { [ J -' ( ~ V U  + qxgh2/2)]i, j + [ J - ' ( h V u  + qxgh2/2]i, j -  l }A( /2 .  

(29) 

(30) 
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YFLUXi+, 
,j 

XFLUXi , j - 1  

Figure 5. Notation for mass flux balancing across a finite volume 

For the y-momentum f lux balance the correspondng (XFLUX)i, and (YFLUX)i, are defined 
as 

(XFLUX)i,j= { [ J - ( ~ U U  + (,gh2/2)]i+ l , j  + [ J - ( ~ U U  + 5ygh2/2]i,j)Aq/2, 

(YFLUX)i, j =  { [ J - ( h  VU + qygh2/2)]i,j+ [ J - I (  h VU + qygh2/2]i, j- 1 } M/2.  

A( J - ’ h U )  = (XFLUX)i, j - (XFLUX)i, j- 1 ,  

A( J - h V ) = (  YFLUX)i+ 1 ,  j-( YFLUX)i, j. 

(31) 

(32) 

(33) 

(34) 

The terms A ( J - ’ h U )  and A(J-’hV)  of the RHS of equation (24) are defined as 

A similar approach is adopted for the RHS differences of equation (25) and (26). 

5.2. Boundary conditions 

Upstream end. At the beginning of the reach ( i  = 1, I M  and j = 1) 

(35) 

(36) 

(37) 

M i ,  ( n + l ) -  -0.0, 

(n + 1) = 0.0, 

hi:: ’) = h!:; + Ai, clyi (hi:; - hj”) - Ai, (hu);:; - ghi:i (So ,  - Sf,)i:i At/cif: , 
ui, 1 

where A=At/Ax and the superscript (n+ 1) denotes the current time step. 

Downstream end. At the end of the reach ( i =  1, lM and j = J M )  the following formula was 
found to be suitable:24 

h!”+l)_ ,, JM - hI:iM- l i , J M  C(hu)!”M -(hu)!?iM - 11- (38) 
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Solid surfaces. To this end, the fluxes hu and hu across the faces of the finite volume, which is 
bounded by the body surface, are calculated so as to satisfy equation (1 7). This is easily achieved 
in the local co-ordinate system 5, q by requiring the velocity component V through the solid body 
of the structure to be zero, i.e. V ~ , ~ ” = 0 . 0  for the ‘lower’ surface and V ~ ~ , ~ ’ = O . O  for the ‘upper’ 
surface. 

5.3. The iterative scheme 

A simple implicit scheme was used for the numerical solution of the continuity equation (24), 
the x-momentum equation (25) and the y-momentum equation (26). The solution procedure 
starts with the initial flow conditions (5)-(14). At a given time step At the mass and momenta 
fluxes (27)-(32) are used to obtain the changes A ( J  hu) and A( J - hu) and thus the 
values of h, u and u for the time step under consideration. Empasis must be given to the fact that 
these changes are not added to the previous pseudotime step in order to yield the current values of 
h,u  and v. They are simply added to the previous time step solution (n). Thus the following 
equations hold 

h), A( J 

h;:J?l’=h~~~+A(h)::,?l’, (39) 

(hu);:,? ’’ = (hu);:; + A( hufJ? ’), 

(hv);:; = (hut:: + A( h~) : :~?  . 
(40) 

(41) 

Of course, the boundary conditions, (35)-(38) need to be properly satisfied. Iterations were 
continued until the maximum change of u-velocity component between successive iterations 
dropped below O+OOOl% over the average flow field velocity. At the same time a second 
convergence criterion was incorporated. This was based on the average over the flow field 
velocity component u. In this case the average change between successive iterations was required 
to drop below 00000025%. Both criteria need to be satisfied simultaneous. The need to utilize 
and second criterion was due to local error instability. Once the solution is achieved, a new time 
step is incorporated and the current solution becomes the initial flow condition for the new time 
step. The total number of iterations required to achieve convergence was strongly dependent on 
the actual time. For the initial time steps this number was of the order of 30 or so, depending of 
course upon the geometrical complexity and the head difference between the reservoirs. However, 
a few time steps later, when the flow field is rather settled, the number of iterations required to 
achieve the above-mentioned convergence dropped to three or so. Thus the applied implicit 
scheme proved to be efficient in achieving the numerical solution. Grid reduction tests have 
shown that the grid size, i.e. the ratio of A x  to Ay, does not affect the accuracy of the soluton. 
However, in cases where this ratio becomes relatively high it does affect the solution convergence, 
and in extreme cases the solution breaks down. Then one has to apply moderate ratios in order to 
achieve convergence. Fortunately, the computational grid is easily formed, requiring minimal 
programming effort. 

The time increment At in a numerical scheme is always subject to certain restrictions because of 
instability considerations. The theoretical maximum stable 
criterion 

Ax 
At= 

u + (gh)”2 . 
In practice the above-calculated At was multiplied by a 
convergence. In order to speed up the solution, the value 

time step At is determined by the CFL 

time factor so as to achieve smooth 
of the time factor was determined by 
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numerical experimentation. For a typical dam-break flow problem solution this value was found 
to be of the order of 0.1 when the h-value of equation (42) was the reservoir water depth furthest 
upstream. 

The computational procedure was greatly facilitated by the simultaneous use of the physical 

Table I 
] Read geometrical data. [ 

I 
1 

JRead physical flow quantities. [ 

1 Set up the physical grid. 
I 

Calculate Ex, nx. EY, rly and J-l 

Calculate bottom slopes Sox, 

1 ] Set up the initial flow conditions.[ 

I 
I 
1 
1 
I 
I 

]Calculate the time step At. 

JBalance the mass fluxes. Estimate a new value for depth h.r 

JApply boundary conditions at inlet and oulet of the flowfield[ 

3 Balance the x-momentum fluxes.Estimate a new value for u. I 

1 Balance the y-momentum fluxes.Estimate a new value for v. I 

]Apply sol id boundary conditions. 

I 
I 

f Y. 
Calculate friction slopes S and S fx 

I 
I no 1 Has the convergence criterion been satisfied?[- 

Yes 
J Proceed to the next time-step. 1 

I 
1 

]Set up the initial flow conditions for the new time-step1 

I 
J Calculate the new inlet and outlet flow boundary conditions[ 

1 
Has time reached maximum required value? 
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and computational planes. For instance, the utilization of the velocity components U and Vin the 
computational grid enables the solid boundary conditions to be easily and accurately applied. At 
the same time the inlet and outlet flow field boundary conditions are applied using the physical 
velocity components u and v. 

For a typical test the amount of CPU time required on a MicroVax I1 computer machine was 
10 884 s. All test cases were carried out with single-precision accuracy. 

Table I shows the flowchart for the calculation of the unsteady two-dimensional flow. 

6. COMPUTATIONAL RESULTS AND DISCUSSION 

6.1. WES tests (1D flow) 

The validity of the proposed computational technique was first tested using 1D flood flow data. 
A rectangular wooden flume lined with plastic-coated plywood, 122 m long and 1.22 m wide, with 
a bottom slope S0,=0-005 was used in the  experiment^.'^ The model dam was placed at 
mid-section, impounding water to a depth of 0.3048 m. Experiments were carried out using 
smooth (n = 0.009) and rough (n = 0050) Manning flow resistance coefficients. 

6.1.1. Comparison with an inviscid solution (characteristics method). The method of character- 
istics was used by Hunt17 to obtain the dam-break flood inviscid solution on a sloping channel 
that was initially dry. The calculated solution was tested against the experimental resuls (WES 
tests). Comparisons of calculated depth hydrographs between the current method and the 
method of characteristics at three different stations are shown in Figures 6(a)-6(c). The agree- 
ment is satisfactory. The time at which the wave tip reaches station x = 7.62 m (Figure 6(c)) is well 
predicted. Similarly, the predicted time at which motion begins in the reservoir is in good 
agreement with the characteristics solution (Figure 6(a)). Notice that although a two-dimensional 
algorithm is incorporated, one-dimensional results are sought. 

6.1.2. Comparison with experimental data and MacCormack's numerical solution. 
Figures 7(a)-7(c) show comparisons of depth hydrographs predicted by the current method with 

characteristics method 1 1 7 1  _-  
- computed. present method 

t f i o  /I, ho=0.3048m, 1=60.96m 

Figure 6(a). Comparison between predicted and characteristics method solution stage hydrographs for WES test; n = 0.0, 
So,=OO05, h1=0.3048 m, station x=-30.5 m 
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characteristics method 1171 - _  
-computed, present method 

0.50 

0.40 

0 0.30 

0.20 

0.10 

0.00 

L 

0.00 0.40 0.80 1.20 1.60 2. 
t n o  / I ,  ho=0.3048m, 1=60.96m 

Figure 6(b). Comparison between predicted and characteristics method solution stage hydrographs for WES test; n =O.O, 
So,=0.005, hl =0.3048 m, station x=O.Orn 

_ _  characterlstlcs method 1111 

- computed. present method 
0.30 

0.20 
0 
1 > 

0.10 

0.00 
0 

Figure 6(c). Comparison between predicted and characteristics method solution stage hydrographs for WES test; n = 0.0, 
So,=O~O05, h1=0.3048 m, station x=7.62 m 

measured data as well as with predictions derived from the application of the well-known 
MacCormack numerical scheme.', The applied MacCormack scheme is the explicit two-step 
predictor-corrector numerical technique, which is well suited for flows with abrupt changes of 
flow quantities. All the above figures refer to low flow resistance (n = 0.009). Again the comparison 
between predictions and measurements is considered to be satisfactory, although some differences 
between theory and measurements are appearing at station x = 24.4 m (Figure 7(c)). Finally, 
Figures 8(a)-8(c) show the comparisons for high flow resistance (n=0.050) at the same stations, 
i.e. x = - 3 0 5 , O . O  and 24.4 m. The agreement between theory and measurements remains equally 
satisfactory for this high-flow-resistance test case. 
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t i m e  (secs)  

Figure 7(a). Comparison between predicted, MacCormack's numerical solution and measured stage hydrographs for 
WES test; low-flow-resistance condition n=0.009, S0,=0Q05, hl =0.3048 m, station x=-305 m 

Figure 7(b). Comparison between predicted, MacCormack's numerical solution and measured stage hydrographs for 
WES test; low-flow-resistance condition n =0.009, Sox =0.005, hl =0.3048 m, station x =O.O m 

6.2. Thrace University tests (2D flow) 

The movement on a dry bed of a two-dimensional flood wave resulting from a dam-break was 
experimentally investigated by Bellos" and Bellos et al.' A convergingdiverging flume config- 
uration with a hypothetical dam located right at the throat of the flume was tested. Measured 
water depths with respect to time were obtained at various cross-sections along the centreline of 
the channel. The tested flume geometry is shown in Figure9. The physical problem under 
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ooo measureaents - cmputed, present method 

0.08 
A 

E 
W 

L 

r- 
+ 
00.04 
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Figure 7(c). Comparison between predicted, MacCormack's numerical solution and measured stage hydrographs for 
WES test; low-flow-resistance condition n =0.009, Sox =0.005, hl =0.3048 m, station x =24.4 rn 
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Figure 8(a). Comparison between predicted, MacCormack's numerical solution and measured stage hydrographs for 
WES test 1.2; high-flow-resistance condition n=0.050, so,=o.005, h ,  =0.3048 m, station x=-30.5 rn 

consideration is of mixed subcritical-supercritical type of flow with abrupt changes of the 
physical quantities (depth, velocities). 

6.2.1. Comparison with experiments. Measured stage hydrographs at various locations along 
the centreline of the rectangular cross-section flume are compared with current method predic- 
tions. These hydrographs refer to positions x=-8 .5 ,  0.0, 5.0 and 10-Om and are shown in 



646 J. V. SOULIS 

ooo measurements 
- c o l p u t d ,  present method 
- - computed, IlcCormack.stW 

0.20 
n 

E 
W 

0.1 6 L 

I 

Q0.12 
a, 
U 

-u 

0.08 * 
U I 1 

3 
0.04 i I I I l I q I  I I I I 1 1 1 I i l I  I 1 I 

0.00 20.00 40.00 60.00 80.00 100.00 120 
t i m e  ( s e c s )  

Figure 8(b). Comparison between predicted, MacCormack's numerical solution and measured stage hydrographs for 
WES test 1.2; high-flow-resistance condition n=0.050, S0,=0~005, hl =0.3048 rn, station x=O.O m 
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Figure 8(c). Comparison between predicted, MacCormack's numerical solution and measured stage hydrographs for 
WES test 1.2; high-flow-resistance condition n=0.050, S0,=0005, hl  =0.3048 m, station x=24.4 m 

Figures lO(a)-lO(d) respectively. The bed slopes Sox and Soy are both zero while the initial 
upstream (from the dam-site) water depth hl was equal to 30-0 and 15.0 cm. When the bed slope 
Sox is increased to 0.010 while Soy remains zero, the corresponding stage hydrographs are as 
shown in Figures 11 (a)- 11 (d). 

In all above figures the two-dimensional flow effects are considered to result from the 
converging-diverging flume geometry. These effects appear as bumps in nearly all these figures. 



DAM-BREAK FLOOD FLOWS 647 

I 13.10 I 

a l l  dimensions in meters 

0 10 20 30 40 50 60 70 

time (secs) 

Figure 9. Schematic diagram of tested flume geometry (2D flow) 

Figure 10(d). Comparison between predicted and measured stage hydrographs for Thrace University test flume; Sox =O.O, 
So,=O.O, station x=-8.5 m 
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Figure 11 (a). Comparison between predicted and measured stage hydrographs for Thrace University test flume; 
Sox = 0.010, Soy = 0.0, station x = - 8.5 m 
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Figure 12(b). Comparison between predicted, MacCormack's numerical solution and measured stage hydrographs for 

The Manning flow friction coefficient n was set equal to 0.012, a value which closely approximates 
the glass-steel material of the tested flume. However, near the dam-site region this value was 
doubled so as to include the possible interaction of the gate sliding mechanism with the flow. 
A 13 x 49 computational grid was used in order to achieve the desired flow accuracy. The 
utilization of a denser computational grid did not substantially alter the predicted results. The 
time step At was set to 0.03 s, while the total duration of a typical experiment was about 70 s. 
Within each time step the number of iterations to achieve solution was equal to three in nearly all 
applied upstream water depths. From all the above figures it is evident that the comparison 
between measured and computed data is rather satisfactory. The two-dimensional flow effects are 
also predicted by the proposed method. 

6.2.2. Comparison with MacCormack's explicit numerical solution. To validate the predicted 
results, it was decided to compare them with the previously developed8 numerical algorithm 
which applies the two-step explicit scheme developed by MacCormack. All these predictions were 
plotted against the available experimental data. Figures 12(a)- 12(e) show comparisons of the 
stage hydrographs for the testing flume at various stations when Sox = 0.002, Soy = 0.0 and the 
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Figure 12(c). Comparison between predicted, Madormack’s numerical solution and measured stage hydrographs for 
Thrace University test flume; Sox = 0.002, So, = 0.0, station x = 2.5 m 
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Figure 12(d). Comparison between predicted, MacCormack's numerical solution and measured stage hydrographs for 
Thrace University test flume; So,=O~O02, So,=O.O, station x =  5.0 m 
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Figure 12(e). Comparison between predicted, MacConnack’s numerical solution and measured stage hydrographs for 
Thrace University test flume; So,=O~O02,  Soy =O.O, station x =  10.0 m 

initial depth at the dam-site hl =0-30 and 0.15 m. These comparisons are considered to be 
satisfactory for both upstream (subcritical) and downstream (supercritical) flow regions. The 
passing of the flood wave is well predicted. Also, the predictions capture the two-dimensional flow 
effects of the converging-diverging flume. Note that the predictions tend to agree better with each 
other than with the measured data. The Manning flow resistance coefficient remains at 0012, 
while its value is doubled in the dam-site region. The need to apply an elaborate turbulence model 
in order to simulate the measured results better is apparent. 

When the bottom slope Sox is increased to 0008 while all the other physical conditions remain 
the same, the results of the comparisons appear as in Figures 13(a)-13(e). Here again the 
agreement is satisfactory. The flood routing is faster, as expected, at high bed slopes and this is 
caused by increased gravitational forces. 

6.2.3. Prediction of longitudinal Froude number. The two-dimensional flow behaviour is better 
seen through the longitudinal Froude number distribution for the straight and curved side walls 
of the tested flume configuration (see Figure 9). The presented test case (see Figures 14(a)-14(e)) 
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Figure 13(a). Comparison between predicted, MacCormack’s numerical solution and measured stage hydrographs for 
Thrace University test flume; Sox = 0.008, Soy =O.O, station x = - 8.5 m 
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Figure 13(b). Comparison between predicted, MacCormack’s numerical solution and measured stage hydrographs for 
Thrace University test flume; Sox = 0.008, Soy =O.O, station x = -4.0 m 
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Figure 13(c). Comparison between predicted, MacCormack’s numerical solution and measured stage hydrographs for 
Thrace University test flume; Sox = OQ08, Soy = 0.0, station x = 2.5 m 
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Figure 13(d). Comparison between predicted, MacCormack's numerical solution and measured stage hydrographs for 
Thrace University test flume; Sox =0008, Soy =O.O, station x = 5.0 m 
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Figure 13(e). Comparison between predicted, MacCormack’s numerical solution and measured stage hydrographs for 
Thrace University test flume; Sox =0.008, Soy =O.O, station x = 10.0 m 

Figure 14(a). Predicted Froude number distribution for Thrace University test flume; Sox =O.O, Sov=O.O, hl =0.30 m, 
t = 3.439 s 
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Figure 14(b). Predicted Froude number distribution for Thrace University test flume; So,=O.O, So,=O.O, hi  =0.30 m, 
t = 8.598 s 
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Figure 14(c). Predicted Froude number distribution for Thrace University test flume; So,=O.O, So,=O.O, hl =0.30 m, 
t = 20.664 s 

uses hl  = 0-30 m, Sox = 0.0, Soy = 0.0 and n = 0.012, while dry bed conditions are applied in the 
downstream region, i.e. h2 = 0.0 m. The dam is located right at the throat of the flume, i.e. 8.5 m 
from the upstream end of the tested flume. The curved side, for all time levels, yields higher 
Froude numbers than the straight side for the near-downstream region. However, this trend is 
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Figure 14(d). 
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reversed further downstream where the side walls of the flume are parallel to each other. Of 
course, high Froude numbers of the order 2.4 appear in the early stages (t =3.439 s, see 
Figure 14(a)) of the rupture of the dam. Later on the maximum Froude number is gradually 
reducing. 
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7. CONCLUSIONS 

An implicit time-marching finite volume numerical scheme was developed and subsequently 
applied for the solution of the two-dimensional unsteady open channel flow equations written in 
conservation form In order to avoid the problems associated with a conventional grid system, 
a body-fitted non-orthogonal local co-ordinate system was utilized. The proposed numerical 
technique was applied to determine the stage hydrographs, water surface profiles and velocity 
components of flood waves resulting from suddenly breached storage dams. The numerical 
scheme should adequately resolve the resulting mixed subcritical-supercritical flow field. Numer- 
ical difficulties as well as diffusion of the wave front arise owing to the very small water depths at 
the boundaries of the flow field. Thus the numerical code must avoid these unfavourable 
conseqences. Predictions were compared with an analytical solution (1D flows) as well as with 
available numerical solutions using MacCormack’s two-step explicit scheme and with experi- 
mental measurements (2D flows). Agreement between predictions and measurements regarding 
the wave front advancement and stage hydrographs is considered to be satisfactory. Also, the 
agreement between the current method predictions and those using an explicit numerical scheme 
was found to be satisfactory. The method can be expanded to calculate 3D dam-break-induced 
flows. 
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